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Abstract:  
 

Machine assignment problems are the central task in 
manufacturing planning. This project aims to show the difference between the 
use of centralized and distributed algorithm to solve the classical assignment 
problems. Centralized algorithms are based on the approach of a central agent 
trying to achieve optimization by considering all the elements in the system. In 
distributed algorithms several independent agents while trying to optimize 
within their bounds interact with each other to achieve a global optimization. 
Hungarian and Auction Algorithm are used as centralized and distributed 
algorithms respectively. The algorithms and solution concepts are explained. 
We test our algorithms by using 180 sample problems generated by a random 
generator with different ranges of cost, matrix density and random seed 
number. The solutions are compared in terms of quality of solution, time 
efficiency, and memory requirements. It is shown that the Hungarian algorithm 
performs better for assignment problems than Auction Algorithm. In cases, 
where we don’t have data to perform a centralized computation we use Auction 
Algorithm. 

 
 
Introduction 
 
  Industrial Engineers employ assignment techniques to position the man, 

machine or the jobs available with them, in an efficient and economic way. Assignment 

Problems are generally a type of Distribution Problems, for which a solution can be derived 

by using Transportation method, Linear Programming, Complete Enumeration, or by 

Branch & Bound methods. Allocation of single machine to one man, single machine to two 
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men, various jobs to one man, indicating the minimization of energy and maximization of 

resource utilization etc. Depending on the result of the assignment problems. Even though 

there are many assignment procedures available, one would prefer a fastest, easiest and the 

best method to assign the resources. With the implementation of computers, the deciding 

factors mentioned above can be determined by the optimality of the final solution, time 

required to process the values fed and based on the memory requirements of the algorithm. 

Based on these ideas, our aim is to compare the Auction Algorithm and the Hungarian 

Algorithm for the Assignment purposes.  

 

 Albeit both the algorithms fall into the assignment techniques, Auction Algorithm is 

used to maximize the profit involved with the allocation, while Hungarian Algorithm deals 

with the minimization of the total cost involved in, say, assigning a man to a machine. 

 

Hungarian Algorithm: 

 

 Hungarian Algorithm, a simple solution algorithm and a method that appears 

unrelated to the Transportation model, takes its natal from the Simplex method as of the 

Transportation problems. The main objective of Hungarian Algorithm is to minimize the 

assignment cost of the system. Given the cost matrix for the assignment problem taken into 

consideration, a simplex-based procedure of explanation for this algorithm is as follows: 

 

Step1: From the original cost matrix, scan through each row and find out the 

minimum entry in every row. Subtract this minimum number from all the 

entries of the respective row.  

Step2:  For the matrix resulting in the above step, identify a minimum entry in each 

column. Subtract it from all the entries of the respective column. 

Step3: Recognize the optimal assignment as where only a single zero appears in 

any row or column. 

Step4:  Make random assignments using the remaining zero cost cells and stop 

when all optimal assignments have been made. 

Step5: Even now if the assignment is not made, check each row without an 

assignment and check each column that has a zero in a checked row. 

Step6: From the resultant, check each row that has an assignment in a checked 

column. 

Step7: Start to repeat the steps 5 & 6 until no more checks can be made further. 



Step8: Draw a line through each unchecked row and checked column. 

Step9:  Updating the matrix: Subtract the minimum unchecked element from all the 

unchecked elements and add it to the elements at the intersection of the 

striking lines.  

Step 9:  Go to step 3   

 
The Auction Algorithm 
 
 The Auction Algorithm is an intuitive method for solving the classical assignment 

problem developed by Dimitri P. Bertsekas in 1979 and subsequently revised in 1990. It 

outperforms substantially its main competitors for important types of problems, both 

theoretically and practically.  This Algorithm is based on the process of auction, where each 

bidder raises the price of his her preferred object by the bidding increment. Just as in real 

auction, bidding increments and price increases spur competition by making the bidder’s 

own preferred object less attractive to other potential bidders.    

 

In the classical assignment problem there are n persons and n objects that have to be 

matched on a one on one basis. There is a benefit aij for matching person i with object j. The 

objective of the problem is to determine the most profitable assignments between persons 

and objects. In order to determine such assignments Auction Algorithm apply the 

economical concepts of prices and equilibria by viewing each person i as the economic agent 

acting in his own best interest. Suppose that object j has a price pj and the person who wants 

this object must pay this price. Hence the total net value of object for each person is aij - pj . 

Intuitively, each person should be assigned to the object that is most profitable for him or 

her, with aij - pj = max {aij - pj}; j=1…n. If this condition holds for every person, then a set of 

prices is at equilibrium and all person are happy.  

 

Auction Process 

 

Step 1: The algorithm starts when every person is randomly assigned to the object.     

 and the price of each object pj is set to zero.  

Step 2: Compute the amount of minimum bid ε = 1/(n-1) where n is the number of 

persons or number of objects that participate in the Auction process. We 

take the value of ε  to be 1/(n-1), because it has been proved that for values 



ε = 1/(n-1), the program doesn’t converge and we should take a slightly 

lesser value.  

Step 3: A random person who is the unhappy is selected.  

Step 4: Exchange object of the unhappy person with the person assigned to object 

k at the beginning of the round. The new price of the bidding object k will 

be computed by newpk= oldpk +γi + ε  where γi = vi-wi which is the largest 

increment by which the best object price pk can be increased so that object 

k still be the best object for person i. vi is the best object value for most 

unhappy agent i = max j {aij - pj} and wi is second best object value                   

i = max j {aij - pj}; j≠ji   

Step 5: Update the profit of object k by subtracting new bidding price pk from the 

profit of assigning object k to each agent i (aik).  

Step6: Repeat the process by picking up a new random unhappy person and 

proceed until the optimal condition aij - pj = max {aij - pj}; j=1…n holds 

(every person is happy with his current object and the price equilibrium has 

been reached). 

 

If we want to make this auction algorithm centralized, instead of taking a random unhappy 

person, we take the most unhappy person from the matrix by max [max {aij - pj} - {aij - pj}]; 

j=1…n. This makes the algorithm converge faster. 

 



Coding procedure and explanation 

 

Hungarian Algorithm 

 

Step1: The algorithm proceeds to the traditional method of row and column reduction. This 

step requires 2n2 iterations for each reduction (row and column).  

 

Step 2: After this step, we count the number of zeros in each row and column. We make 

first assignments to the rows and columns, which have unique zeros dynamically, meaning, 

during the process of assignments if any row or column comes up with a unique zero will 

also be assigned. 

 

Step 3: Then there may be rows and columns, which has more than one zero. Here we make 

the arbitrary assignments (for the reaming cells). It is a heuristic process; we take a method, 

which had solved all the test problems we generated (apart from the 180 problems, we tested 

10,000 5 x 5 matrix problems and some higher order matrix problems like 200,500,1000). In 

all the cases we were able to get optimal assignments. But still this is a heuristic step in the 

process and it may fail in certain cases. This can be avoided by using the alternate method 

available at that point of heuristic decision. 

 

A sample matrix in which our heuristic works is shown below 

 

0 5 1 0 9 1 7 

6 9 0 0 0 5 0 

2 0 0 9 2 0 5 

0 3 2 7 6 1 4 

6 0 0 9 2 0 5 

0 4 0 2 0 10 0 

3 0 1 5 9 9 8 

 

1st Assignment row4,col1 

2nd Assignment row7,col2 

3rd Assignment Row1,col4 

4th Assignment Row5,col3 



5th Assignment row2,col5 

6th Assignment row3,col6 

7thAssignment row6,col7 

 

If we proceed through other way , like the one shown below for the same matrix, it shows 

that an optimal assignment is not feasible, 

 

0 5 1 0 9 1 7 

6 9 0 0 0 5 0 

2 0 0 9 2 0 5 

0 3 2 7 6 1 4 

6 0 0 9 2 0 5 

0 4 0 2 0 10 0 

3 0 1 5 9 9 8 

 Row and Column Without an Assignment   

 

 

1st Assignment row4,col1 

2nd Assignment row7,col2 

3rd Assignment Row1,col3 

4th Assignment Row2,col3 

5th Assignment Row3,col6 

6th Assignment Row6,col5 

7thAssignment Not possible 

 

This problem has aroused because at the point of selecting an arbitrary assignment 

to the zero cell, we need to have a definite heuristic method, but here we selected the 4th 

assignment as the element in row 2 and column 3, which is first zero element that occurs in 

the selection process. 

 

But our heuristic works, since we select the row or column that has the minimum 

number of zeros (more than one) and the assign arbitrarily. 

 



Step 4:  After all the assignments have been made, we check the rows that were not 

assigned. Then we check each column that has a zero in the checked column. From the 

resultant we check each row that has an assignment in the checked column. The number of 

strikes is given by the number of unchecked rows and unchecked columns.  

 

Step 5: If the number of strikes is not equal to the number of rows, we proceed to step 2 

and repeat the process, until an optimal assignment is made.  

 

We make heuristic assignment in each and every step were we may encounter more 

than one row or column having the same number of zeros(greater than 1). When all the 

optimal assignments have been made we calculate the cost based on the assigned cells. 

 

The syntax for execution of Hungarian algorithm is, Hungarian <filename> 

 

It stores the result in two files 

1) answer.txt  -- Has the optimal cost, time required for execution , and the number of 

iterations (here we term iteration as one matrix operation involved after the row and 

column reduction). 

2) Assignments.txt – The assignments are stored in this file. 

 

This file can execute multiple problems that are in the text file. And the results are stored in 

the files with their case numbers. 

 

The Auction process: 

 

This is a distributed algorithm. The coding complexity is less compared to 

Hungarian. In this algorithm our initial assignment is diagonal in nature, that is person 1 is 

assigned to nth object, person 2 is assigned to n-1th  object and so on. 

The epsilon we use is restricted to three decimals. The epsilon is calculated as 1/n, where n 

is the size of the matrix. Here the Limitation for the size of matrix is 1000. Beyond which 

the algorithm cannot proceed. We can overcome it by eliminating the limitation on the 

number of decimal places in the epsilon value. 

 

Step 1: We scan through each row and find out the unhappy persons, they are stored in an 

array called unhappy. 



 

Step 2: If all persons are happy we exit, else we generate a random number with a limit as 

the size of the unhappy array. 

 

Step 3: We select the unhappy person (selected by the random number) and assign him the 

new object using the Bertsekas principle (The new price of the bidding object k will be 

computed by εγ ++= ikk oldpnewp  where iii wv −=γ which is the largest increment by 

which the best object price pk can be increased so that object k still be the best object for 

person i. vi is the best object value for most unhappy agent i = }{max jijj
pa − and wi is 

second best object value = }{max jijjij
pa −

≠
.) 

 

Step 4: We switch the assignments between the two persons considered, the one chosen and 

the person who was assigned to the object, which is been bid by the latter. 

 

Step 5: We proceed to step 1. and the process is continued until all are happy. 

 

 

The syntax for execution of Auction algorithm is, Auction<filename> 

 

It stores the result in two files 

3) answer.txt  -- Has the optimal cost, time required for execution, and the number of 

iterations (here we term iteration as one matrix operation involving updating every 

unhappy person to a happy person). 

4) Assignments.txt – The assignments are stored in this file. 

 

This file can execute multiple problems that are in the text file. And the results are stored in 

the files with their case numbers. 

 

This algorithm has different execution time and iterates through different number 

of iterations each item, due to the random selection of the unhappy row. This algorithm is 

slower compared to Hungarian, which is centralized, but if the situation demands this type 

of algorithm, like a distributed system, we will use Auction algorithm. 

 

 



Analysis of the results 

 

Quality of solution  

 
The quality of solution is measured as a function of cost of assignment. In our case 

both the Hungarian and Auction yields the same assignment cost for all the 180 test 

problems. This shows that in terms of quality of solution there is no difference between 

both the algorithms. To make sure that the quality of solution is consistent for any problem, 

we test run the algorithms for problem sizes of matrices varying from 200 –1000. From the 

results shown below we can conclude that the quality of solution is consistent for both the 

Algorithms.    

 

 

Auction Algorithm           
 Matrix Size 200 300 400 500 1000 

Density            
0.5 0.38 /0 1.222/ 0 2.854 / 0 7.03 /0 42.5 / 0 
0.75 0.641 / 0 1.923 / 0  5.258 / 0 10.735 / 0 77.5 / 0  

1 0.771 / 0 2.664 / 0 6.92 / 0 12.207 / 0  92.6 / 0 
Hungarian Algorithm       

Matrix Size 200 300 400 500 1000 
Density            

0.5 0.02 / 0 0.03 /0  0.07 / 0 0.1 /0  0.440/ 0 
0.75 0.02 /0 0.04/ 0  0.06 /0  0.1 / 0  0.451 / 0 

1 0.02 / 0  0.04 / 0 0.5 / 0 0.9 / 0   0.471 / 0 
Note: The computational time and cost are given as Time / Cost in the matrix cells 

 

Time efficiency  

 

We use time as a measure of performance of the algorithm. In addition to comparing 

the time required to execute the code of both the algorithms, the time efficiency is also 

compared with the flapjv program provided by the instructor. It’s evident that the Hungarian 

algorithm out performs Auction as the density of the matrix increases. The Auction 

algorithm is almost 50 times slower for large matrices with density one.  

The reason for this slow performance of auction algorithm is that the increment in 

Auction is very small and thus results in a large number of iterations consuming time. 

 

 



Time Comparison for Auction, Hungarian 
and Flapjv Algorithms
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Time Comparison for Large Size Matrices 

 

Auction Algorithm           
 Matrix Size 200 300 400 500 1000 

Density            
0.5 0.38 1.222 2.854 7.03 42.5 
0.75 0.641 1.923 5.258 10.735 77.5  

1 0.771 2.664 6.92 12.207 92.6  
Hungarian Algorithm       

Matrix Size 200 300 400 500 1000 
Density            

0.5 0.02 0.03 0.07 0.1 0.44 
0.75 0.02 0.04 0.06 0.1 0.451  

1 0.02 0.04 0.5 0.9 0.471  
 

 

Computational Complexity    

 
Computational complexity is a measure of the amount of complex operations that 

are necessary to perform the algorithm. It can be measured in terms of memory required to 

perform these operations.  

 

For Hungarian algorithm our program needs 8n2 +12n memory locations 

The orgsource, source are double pointers which requires 4 bytes of n2 memory 

locations which adds up to 8 n2 memory locations. The row score, colscore, colcheck, 

rowcheck are Boolean values that occupy 4n bytes. The rowzerocount, colzerocount are 

Auction Hungarian Flapjv 
     

0.036 0.002 0.000 
0.052 0.003 0.000 
0.073 0.002 0.010 
0.038 0.003 0.000 
0.058 0.003 0.000 
0.578 0.011 0.010 

Time to execute in 
Seconds 



integers which occupy 4bytes each which accounts for 8n bytes. In total the Hungarian 

program will require 8n2 +12n memory locations. 

 

 For Auction algorithm our program needs 8n2 +20n memory locations. The 

orgsource, source are double pointers which requires 4 bytes of n2 memory locations which 

adds up to 8 n2 memory locations. The rowassign, rowfirstmatrix, rowsecmatrix are int 

values which occupy 3x4n bytes. The firstmaxcol and assignment are floats which occupy 

2x4n bytes. Thus in total the Auction algorithm requires  8n2 +20n memory locations. 

 

 
 

Memory Requirements 
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Note: Due to the minor difference in the values, both the lines in the plot merge. 

 

Space Requirement Comparison Between Hungarian and Auction Algorithm 
Matrix Size Space Requirement (Kbytes) Space Requirement (Kbytes) 

  for Hungarian  for Auction 
5x5 0.25390625 0.29296875 

10x10 0.8984375 0.9765625 
100x100 79.296875 80.078125 

1000x1000 7824.21875 7832.03125 
10000x10000 781367.1875 781445.3125 

Note: Space Requirement for Hungarian: 8(n2)+12n 
Note: Space Requirement for Auction: 8(n2)+20n 
 

Hence we can say that there is no major difference between memory requirements for both 

algorithms. 

 

 



 

Conclusion  

 
 The Hungarian and Auction algorithms are compared numerically in terms of 

quality of solution, computational time, number of iterations and memory requirements. We 

can see that except in the computational time, both algorithms perform equally well. We can 

conclude that the Hungarian algorithm performs better than Auction algorithm for 

assignment problems of any size. The reason being the centralized approach where in the 

agent has a total view of the problem. In contrast the Auction algorithm performs better for 

problems where we cannot obtain data to perform a centralized computation. 
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Appendix 

i. Computational Results of Auction algorithm 

ii. Computational Results of Hungarian algorithm 

iii. Code 



/*********************************************************************************
******** 
 Auction algorithm 
created by Arunachalam N, Bharani Babu, Murugappan Meyappan, Sorajack Mongkolsri 
INEN 654 Manufacturing planning and Analysis 
**********************************************************************************
*******/ 
 
#include "stdafx.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream.h> 
#include <malloc.h> 
#include <memory.h> 
#include <math.h> 
#include <time.h> 
 
FILE *stream; 
FILE *stream1; 
FILE *stream2; 
 
float **orgsource; 
float **source; 
int i,j,n; 
double x,m; 
double eata; 
int *rowassign; 
int *firstmaxcol; 
bool *col; 
float *rowfirstmax; 
float *rowsecmax; 
int *unhappy; 
double boolean; 
int boolean1; 
 
int rowsel,randsel,booleanrowassign,prevrowassign; 
float increment; 
float *assignment; 
 
 int cost=0; 
   
 
  
int main(int argc, char* argv[]) 
{ 
  
 if (argc==1) 
  printf ("The syntax is auction filename"); 
 else 
 { 
  if (argc==2) 
  { 
   char *filename= argv[1]; 
   clock_t start,finish; 
   //file from which data is retrieved 
   stream = fopen(filename,"r"); 
 
   //file were the answers are stored are stored  
   stream1 = fopen("answer.txt","w"); 
   stream2= fopen("assignments.txt","w"); 
  
 if (stream == NULL) 
  printf("not able"); 
 else 
 { 
  fseek(stream,0L, SEEK_SET); 
  int number=1; 
  printf("Generating the answer files answer.txt and 
assignments.txt"); 
  // proceed till the end of file occurs 



  printf("Generating the answer files answer.txt and 
assignments.txt"); 
   while(!feof(stream)) 
   { 
  n=0; 
  //Get the size of matrix 
  fscanf(stream,"%d",&n); 
  fprintf(stream1,"matrix size %d\n",n); 
   
  if(n==0) 
  break; 
  x=n; 
  source = new float*[n]; 
  orgsource = new float*[n]; 
  rowassign = new int[n]; 
  firstmaxcol = new int[n]; 
  rowfirstmax = new float[n]; 
  rowsecmax= new float[n]; 
   
  unhappy= new int[n]; 
  assignment= new float[n]; 
   
   for (i=1;i<=n;i++) 
   { 
 
   source[i]= new float[n]; 
   orgsource[i] = new float[n]; 
   rowassign[i]=0; 
   firstmaxcol[i]=0; 
   rowfirstmax[i]=-9999999; 
   rowsecmax[i]=-999999; 
    
   for (j=1;j<=n;j++) 
   { 
     //Get the matrix elements 
    fscanf(stream,"%f",&source[i][j]); 
     orgsource[i][j]=source[i][j]; 
     source[i][j]=-source[i][j]; 
     
   } 
 
   } 
   //Start of algorithm 
   start=clock(); 
    //Calculation of epsilon 
    eata = 1/x; 
    boolean=eata*1000; 
    
    boolean1=abs(boolean); 
    eata=double(boolean1)/1000; 
    
    srand( (unsigned )time(NULL) ); 
 
     
   j=1; 
   //making an initial random assignment 
   for (i=n;i>=1;i--) 
   { 
    rowassign[j]=i; 
    assignment[j]=source[j][i]; 
    j++; 
   
   } 
     
   //Finding the First maximum in each row 
   for (i=1;i<=n;i++) 
   { 
    for (j=1;j<=n;j++) 
    { 
     if (source[i][j]>rowfirstmax[i]) 
     { 



      rowfirstmax[i]=source[i][j]; 
      firstmaxcol[i]=j; 
     } 
    } 
   } 
   //Finding the Second maximum in each row 
   for (i=1;i<=n;i++) 
   { 
    for (j=1;j<=n;j++) 
      
    { 
        if (firstmaxcol[i] != rowassign[i]) 
        if (source[i][j]>rowsecmax[i] && firstmaxcol[i] 
!= j) 
     { 
      rowsecmax[i]=source[i][j]; 
       
     }; 
    } 
   } 
    
   j=1; 
   //Find if the person is unhappy or not 
   for (i=1;i<=n;i++) 
   { 
    
     
    if ((fabs(assignment[i]-rowfirstmax[i])) > fabs(eata 
) ) 
     { 
     
     unhappy[j]=i; 
     j++; 
     } 
    
   } 
   
   int iteration=0; 
   //If all are happy then exit else proceed 
   while (j!=1) 
   { 
     
   j--; 
    
   bool test; 
   if(j!=1) 
   { 
    while (test != true) 
    { 
//random generation of the a number with the limits of number of unhappy perons 
    

randsel=(float(rand())/float(RAND_MAX))*j; 
    
   if ( randsel!=0) 
    break; 
    } 
   } 
   else 
   { 
    
    randsel=1; 
   } 
    rowsel=unhappy[randsel]; 
    //Calculate the bidding increment 
   increment=(rowfirstmax[rowsel]-rowsecmax[rowsel])+ (eata); 
     
    //Decrement the profit by that value 
    for (i=1;i<=n;i++) 
    { 
    
 source[i][firstmaxcol[rowsel]]=source[i][firstmaxcol[rowsel]]-increment; 



      
    } 
     
    prevrowassign=rowassign[rowsel]; 
    rowfirstmax[rowsel]=0; 
     
     
   
 assignment[rowsel]=source[rowsel][firstmaxcol[rowsel]]; 
    rowassign[rowsel]=firstmaxcol[rowsel]; 
    // Swap the persons who were assigned to the 
previous object 
    for(i=1;i<=n;i++) 
    { 
     if (rowassign[rowsel]==rowassign[i] && i != 
rowsel) 
     { 
      rowassign[i]=prevrowassign; 
     
 assignment[i]=source[i][prevrowassign]; 
     } 
    } 
     
     
    //reinitialize the max and unhappy arrays 
    
     for (i=1;i<=n;i++) 
    { 
    firstmaxcol[i]=0; 
    rowfirstmax[i]=-999999; 
    rowsecmax[i]=-9999999; 
    
    
    unhappy[i]=0; 
    
    } 
     
    //Finding the First maximum in each row 
    for (i=1;i<=n;i++) 
    {  
    for (j=1;j<=n;j++) 
    { 
     if (source[i][j]>rowfirstmax[i]) 
     { 
      rowfirstmax[i]=source[i][j]; 
      firstmaxcol[i]=j; 
     } 
    } 
    } 
    //Finding the Second maximum in each row 
   for (i=1;i<=n;i++) 
   { 
    for (j=1;j<=n;j++) 
      
    { 
       if (firstmaxcol[i] != rowassign[i]) 
       if (source[i][j]>rowsecmax[i] && firstmaxcol[i] 
!= j) 
     { 
      rowsecmax[i]=source[i][j]; 
      
     }; 
    } 
   } 
    
   j=1; 
   //Find if the person is unhappy or not 
   for (i=1;i<=n;i++) 
   { 
    
     



    if ((fabs(assignment[i]-rowfirstmax[i])) >fabs(eata 
) ) 
     
     { 
     unhappy[j]=i; 
     j++; 
    } 
   } 
   
     
   } 
  fprintf(stream2,"Assignment for case number%d\n",number); 
  //Printing the assignments to the file 
  for (i=1;i<=n;i++) 
  { 
  for (j=1;j<=n;j++) 
  { 
   if (rowassign[i]==j) 
   { 
  cost= orgsource[i][j]+cost; 
  fprintf(stream2,"Row %d\t",i); 
  fprintf(stream2,"Column %d\n",j); 
   } 
  } 
  } 
   //End of algorithm 
    finish=clock(); 
    float test11=(finish-start)/float(CLOCKS_PER_SEC); 
    fprintf(stream1,"case %d\n",number); 
    fprintf(stream1," cost %d\n",cost); 
    fprintf(stream1,"execution time %f\n",test11); 
     
    number++; 
    
 }    
    fclose(stream1); 
    fclose(stream); 
    fclose(stream2); 
 }  
 } 
 } 
 return 0; 
} 



/*********************************************************************************
** 
Hungarian algorithm 
created by Arunachalam N, Bharani Babu, Murugappan Meyappan, Sorajack Mongkolsri 
INEN 654 Manufacturing planning and Analysis 
**********************************************************************************
**/ 
 
#include "stdafx.h" 
 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream.h> 
#include <malloc.h> 
#include <memory.h> 
#include <time.h> 
 
FILE *stream; 
FILE *stream1; 
FILE *stream2; 
void function (int); 
void functioncol (int); 
void colscoreset(); 
int **source; 
int i,n,j,m,a,b; 
bool *rowscore; 
bool *colscore; 
bool *colcheck; 
bool *rowcheck; 
bool test; 
int *colbool; 
int test1; 
int *rowzerocount; 
int *colzerocount; 
int strikes; 
int cost; 
int **orgsource; 
void strikingmethod(); 
int iteration; 
int number=0; 
int main(int argc, char* argv[]) 
{ 
  
  
 if(argc==1) 
  printf("The syntax is Hungarian filename"); 
 else 
 { 
  if (argc==2) 
  { 
   char *filename = argv[1]; 
   printf("%c\n",&argv[1]); 
   int maxzero=0; 
  //open the file which has the data 
  stream = fopen(filename,"r"); 
  //files to which the output is assigned 
  stream1 = fopen("answer.txt","w"); 
  stream2 = fopen("answerassignments.txt","w"); 
 
 if (stream == NULL) 
  printf("not able"); 
 else 
 { 
   
  fseek(stream,0L, SEEK_SET); 
  while (!feof(stream)) 
  { 
   n=0; 
  //Get the matrix size  
  fscanf(stream,"%d",&n); 



  printf("%d\n",n); 
  rowzerocount=new int[n]; 
  colzerocount=new int[n]; 
  rowscore= new bool[n]; 
  rowcheck= new bool [n]; 
  colscore=new bool[n]; 
  colcheck= new bool [n]; 
  colbool=new int[n]; 
  source = new int*[n]; 
  orgsource = new int*[n]; 
 
  for (i=1;i<=n;i++) 
  { 
   source[i]= new int[n]; 
   orgsource[i] = new int[n]; 
   //Get the elemnts in the matrix 
   for (j=1;j<=n;j++) 
   { 
   fscanf(stream,"%d",&source[i][j]); 
   orgsource[i][j]=source[i][j]; 
   } 
   rowzerocount[i]=0; 
   colzerocount[i]=0; 
  
   
  } 
  
  clock_t start,finish; 
  //Start of algorithm 
  start=clock(); 
  //Row reduction 
  for (i=1;i<=n;i++) 
  { 
   m=source[i][1]; 
   for (j=1;j<=n;j++) 
   { 
   if(source[i][j]<=m) 
    m=source[i][j]; 
   } 
   if (m!=0) 
    for (j=1;j<=n;j++) 
     source[i][j]-=m; 
  } 
  //Column reduction 
  for (i=1;i<=n;i++) 
  { 
   m=source[1][i]; 
   for (j=1;j<=n;j++) 
   { 
   if(source[j][i]<=m) 
    m=source[j][i]; 
   } 
   if (m!=0) 
    for (j=1;j<=n;j++) 
     source[j][i]-=m; 
  } 
  //call the function striking method 
  strikingmethod(); 
  //if the optimal assignment is not reached enter the loop 
  if (strikes!=n) 
  { 
   strikes=0; 
//CHECK THE ROWS WHICH HAVE NO ASSIGNMENTS AND CHECK EACH COLUMN THAT HAS A ZERO 
IN A CHECKED ROW 
   for (i=1;i<=n;i++) 
   { 
    for (j=1;j<=n;j++) 
    { 
    if (rowscore[i] != true &&  source [i][j] == 0) 
    { 
       



     colcheck[j] = true ; 
     
     rowcheck[i] = true; 
      
     break; 
    } 
   } 
 
  } 
  
 
    int arb = -1; 
  while (arb<0) 
  { 
     arb= 1; 
  ////CHECK THE EACH ROWS WHICH HAVE AN ASSIGNMENT IN THE CHECKED 
COLUMN 
  for (j=1;j<=n;j++) 
  { 
   if (colcheck[j]==true) 
   for (i=1;i<=n ; i++) 
   { 
    if (source[i][j]==0 && rowscore[i] == true && 
colscore[j]==true && rowcheck[i] != true && colbool[j]== i) 
    { 
     rowcheck[i] =true; 
      
     arb = -1; 
    } 
      
   }; 
 
  } 
  
  
  for (i=1;i<=n;i++) 
  { 
   if (rowcheck[i]==true) 
    for(j=1;j<=n;j++) 
    { 
     if (source[i][j]==0 && colcheck[j] != true ) 
     { 
      colcheck[j] = true; 
       
      arb = -1; 
     } 
    }; 
  } 
  
  } 
  } 
//if still optimal solution is not reached strike each unchecked row and unchecked 
column 
  if (strikes!=n) 
  { 
   strikes=0; 
  for (i=1;i<=n;i++) 
  { 
   if (rowcheck[i]!=true ) 
    
    strikes++; 
    
   if( colcheck[i] ==true) 
    strikes++; 
  } 
  } 
  iteration=1; 
  
  while (strikes != n) 
  { 
   iteration++; 



    
   m=2000000; 
   for (i=1;i<=n;i++) 
   { 
   for (j=1;j<=n;j++) 
   { 
    // Find the minimum among the remaining elements 
   if (rowcheck[i]==true && colcheck[j]!=true) 
   { 
    if (source[i][j]<m) 
     m=source[i][j]; 
   } 
     
   } 
   } 
   for (i=1;i<=n;i++) 
   { 
   for (j=1;j<=n;j++) 
   { 
  // Subtract the minimum value from the other unchecked elements 
    if (rowcheck[i]==true && colcheck[j]!=true) 
    { 
     source[i][j]-=m; 
    } 
    // Add the minimum value to the elements at the 
intersection 
    if (rowcheck[i]!=true && colcheck[j]==true) 
    { 
     source[i][j]+=m; 
    } 
   } 
   } 
   //proceed to find the assignments 
   strikingmethod(); 
    
  if (strikes == n) 
  break; 
  else 
  strikes=0; 
  //if not feasible proceed 
    
   for (i=1;i<=n;i++) 
   { 
    for (j=1;j<=n;j++) 
    { 
    if (rowscore[i] != true &&  source [i][j] == 0) 
    { 
     colcheck[j] = true ; 
       
     rowcheck[i] = true; 
       
     break; 
    } 
   } 
 
  } 
  
  int arb=-1; 
   while (arb<0) 
  { 
     arb= 1; 
  for (j=1;j<=n;j++) 
  { 
   if (colcheck[j]==true) 
   for (i=1;i<=n ; i++) 
   { 
    if (source[i][j]==0 && rowscore[i] == true && 
colscore[j]==true && rowcheck[i] != true && colbool[j]==i)  
    { 
     rowcheck[i] =true; 
     arb = -1; 



    } 
   }; 
  } 
  for (i=1;i<=n;i++) 
  { 
   if (rowcheck[i]==true) 
    for(j=1;j<=n;j++) 
    { 
     if (source[i][j]==0 && colcheck[j] != true) 
     { 
      colcheck[j] = true; 
       
      arb = -1; 
     } 
    }; 
  } 
  } 
   if (strikes!=n) 
  { 
   strikes=0; 
  for (i=1;i<=n;i++) 
  { 
   if (rowcheck[i]!=true ) 
    
    
    strikes++; 
    
    
   if( colcheck[i] ==true) 
    strikes++; 
  } 
  } 
  
} 
 
 
  number++; 
  printf("No. of strikes %d\n", strikes); 
  cost=0; 
  int assignment=0; 
  for (i=1;i<=n;i++) 
  { 
   for (j=1;j<=n;j++) 
   { 
    if ( colbool[j]==i ) 
    { 
     assignment++; 
     //Calculate the assignment cost and print 
the assignments to the file 
     cost=orgsource[i][j] + cost; 
      fprintf(stream2,"Row %d\t",i); 
     fprintf(stream2,"Column %d\n",j); 
      
    } 
   } 
  } 
  
  printf("Cost%d\n",cost); 
  finish=clock(); 
  float test=(finish-start)/float(CLOCKS_PER_SEC); 
  fprintf(stream1,"%f\n",test); 
  fprintf(stream1,"  %d\n",cost); 
  fprintf(stream1,"Assignments %d\n",assignment); 
  fprintf(stream1,"Iterations %d\n",iteration); 
  } 
  fclose(stream1); 
  fclose(stream); 
 } 
 } 
 } 
 return 0; 



} 
//Function which looks after row striking after an assignment is made in the row 
 void function (int i) 
{ 
  for (int j =1 ;j <= n; j++) 
  { 
  if (source[i][j] == 0 && colscore[j] != true && colzerocount[j] != 
0 && test != true)  
   { 
   colscore[j]=true; 
   colbool[j]=i; 
    
   colzerocount[j] = 0; 
   rowscore[i]=true; 
    
   rowzerocount[i]=0; 
   for (a=1;a<=n;a++) 
   { 
    if (source[a][j] == 0 && rowzerocount[a]!=0) 
     rowzerocount[a]--; 
   } 
   for (a=1;a<=n;a++) 
   { 
    if (source[i][a] == 0 && colzerocount[a]!=0) 
     colzerocount[a]--; 
   } 
   
   test = true; 
   break; 
   } 
 
  } 
} 
 //Function which looks after column striking after an assignment is made in the 
column 
void functioncol (int j) 
{ 
  for (int i =1 ;i <= n; i++) 
  { 
  if (source[i][j] == 0 && rowscore[i] != true && rowzerocount[i] != 
0 && test !=true)  
   { 
   rowscore[i]=true; 
   colbool[j]=i; 
   colscore[j]=true; 
   
    
   colzerocount[j]=0; 
   rowzerocount[i]= 0; 
   for (a=1;a<=n;a++) 
   { 
    if (source[i][a] == 0 && colzerocount[a]!=0) 
     colzerocount[a]--; 
   } 
   for (a=1;a<=n;a++) 
   { 
    if (source[a][j] == 0 && rowzerocount[a]!= 0) 
     rowzerocount[a]--; 
   } 
    
  
   test=true; 
   break; 
   } 
  } 
 
} 
//reinitializing the value after evry iteration 
void colscoreset() 
{ 
  rowscore= new bool[n]; 



  colscore= new bool[n]; 
  rowcheck= new bool[n]; 
  colcheck=new bool[n]; 
  
  colbool=new int[n]; 
} 
 
//the function which looks after which row to strike or column based on the zero 
count 
void strikingmethod() 
 
{ 
  colscoreset(); 
  for (i=1;i<=n;i++) 
  { 
   for (j=1;j<=n;j++) 
   { 
    if (source[i][j]==0) 
    { 
     rowzerocount[i]++; 
     colzerocount[j]++; 
    } 
   } 
    
  } 
  strikes =0; 
   int test1=100; 
  while (test1!=0) 
  { 
   test1=0; 
  for (i=1;i<=n;i++) 
  { 
   if (rowzerocount[i] == 1) 
   { 
    test = false; 
    function(i); 
    test1=1; 
   } 
  } 
   for (j=1;j<=n;j++) 
  { 
   if (colzerocount[j] == 1) 
   { 
    test = false; 
    functioncol(j); 
    test1=1; 
   } 
  } 
  } 
   m=n; 
  int identity; 
   
  test1= 100; 
  int rowtester,coltester; 
  //This loop makes arbitary assignments based on our procedure to 
the rows and coulmns with more than one zerocounts 
  while (test1!=0) 
  { 
  test1=0; 
  m=n; 
  rowtester=0; 
  coltester=0; 
  for (j=1;j<=n;j++) 
  { 
   if (rowzerocount[j]<=m  && rowscore[j] != true && 
rowzerocount[j]!=0) 
   { 
     
    m=rowzerocount[j]; 
    test1=1; 
    identity=j; 



    rowtester=1; 
    coltester=0; 
    
   } 
   if (colzerocount[j]<=m  && colscore[j] != true && 
colzerocount[j]!=0) 
   { 
    m=colzerocount[j]; 
    test1=1; 
    identity=j; 
    coltester=1; 
    rowtester=0; 
       
   } 
  } 
  if (m>0 && test1==1) 
  { 
    
    test= false; 
    if (rowtester==1) 
    function(identity); 
    if (coltester==1) 
    functioncol(identity); 
     
  } 
    
  } 
  //Find if the solution obtained is optimal or not 
  for (j=1;j<=n;j++) 
  { 
   if (rowscore[j]==true && colscore[j]==true) 
    strikes++; 
  
    
  } 
} 
 


